next up previous contents
Next: Polynomials Up: Functions Previous: Scalar Functions

Vectors and Matrices

Name( Arguments ) Function Mod Ref
linspace($var_1$,$var_2$,COUNT)
vector with COUNT numbers ranging from $var_1$ to $var_2$
O
length($vector$) number of elements in $vector$ M,O
zeros(ROWS[,COLUMNS]) matrix of zeros M,O
ones(ROWS[,COLUMNS]) matrix of ones M,O
eye(ROWS[,COLUMNS]) matrix with diagonal one M,O
rand(ROWS[,COLUMNS]) matrix of random numbers M,O
hilb(RANK) Hilbertmatrix M,O
invhilb(RANK) Inverse Hilbertmatrix O
size($matrix$) number of rows and columns M,O
sum($var$)
if $var$ is a vector: sum of elements, if $var$ is a matrix: sum of columns.
M,O
find($var$) indices of nonvanishing elements M,O
max($var$) largest element in $var$ M,O
min($var$) smallest element in $var$ M,O
diag($var$,[OFFSET])
if $var$ is a vector: matrix with $var$ as diagonale, if $var$ is matrix: diagonale as vector.
M,O
det($matrix$) determinante M,O
eig($matrix$) eigenvalues M,O
inv($matrix$) inverse M,O
pinv($matrix$) pseudoinverse M,O
lu($matrix$) LU-decomposition M,O
svd($matrix$) singular value decomposition (Lapack) M,O
qr($matrix$) QR-decomposition (Lapack) M,O
eigen($matrix$) eigenvalues (Lapack) M,O

next up previous contents
Next: Polynomials Up: Functions Previous: Scalar Functions
Helmut Dersch
2009-03-15