
Interactive Java Viewer for HDR-panoramas

H. Dersch
University of Applied Sciences Furtwangen, Germany

December 28, 2003

Abstract

A panorama viewer applet for interactive viewing of high-
latitude panoramic images has been developed. The ba-
sic functionality of ordinary VR-viewers has been im-
plemented together with manual and optional automatic
brightness adjustment. Fast and accurate rendering is
achieved by using lookup tables for linearization and
dynamic range compression. A highly compressed im-
age format suitable for internet applications is used,
which typically requires 25% more space than JPEG-
compressed low dynamic range images.

1 Introduction

The limited dynamic range of imaging and display de-
vices is a standard problem in photography. Recording of
high contast scenes with standard analog or digital cam-
eras is limited by two main factors. Sensors in digital
cameras and films in analog devices have limited dynamic
range, the maximum being approximately 10-12 f-stops
for color negative film. Independently, dynamic range is
limited by lens flare to typically 7-9 f-stops even in the
presence of antireflection coatings . Image file formats
are adjusted to these limitations and commonly provide 8
bits/color luminance range.

Particular difficult is the creation and display of
panoramic views. Panoramas, especially ones with full
spherical coverage (“360

���
180

�
”), often include ex-

tremely different luminance levels depending on the view-
ing direction: In landscape scenes very high values up into
the sky, almost always including views directly into the
sun, whereas shadows may be many orders of magnitude
less luminous.

For an exact registration of high contrast scenes we are
forced to combine several images taken with varying ex-
posures, which are then assembled to one high-dynamic
range image (HDR-image) in a special file format. This
method has been extensively studied and described in the
literature [1], [2], [3], [4], [5], [6], [7], [8], [9], and au-
tomatic versions of panorama capturing devices are cur-
rently being offered commercially [10].

Display of HDR-images on limited range devices is ac-
complished by combining two basic ideas:

1. Compression of contrast by applying a nonlinear
transformation to source luminance. Any amount of
contrast may be compressed into the limited device
space. However, images may appear dull and detail
is lost.

2. Spatially varying brightness adjustment. Regions of
the panoramic image are brightended or darkened
depending on the scene content and average local lu-
minance.

Viewers or tone mapping algorithms for static HDR-
images have been proposed and developed in the past
[11], [12], [13], [14], [15] and they implement one or
both of the methods mentioned above with a multitude
of variations. Recently, panoramic viewers for interac-
tive viewing of HDR- panoramas have been suggested
[16]. Brightness adjustment is achieved by mixing several
in-memory rendered low-latitude versions of the image.
These methods provide fast response on suitable graphics
hardware.

Today many if not the majority of interactive panora-
mas are served and viewed over the internet using small
footprint Java-based viewers which are unable to access

1

specific hardware or operating system features directly.
This is not just a limitation of resources but usually desir-
able in order to reach a large audience. Also, slower and
less powerful devices like PDAs may not provide these
features even in the foreseeable future. A second problem
is the high bandwidth required by current HDR-image for-
mats, which makes serving over slow connections diffi-
cult. Both problems are addressed in this work.

2 Java Based Panoramic Viewer

The proposed viewer is based on recent work resulting in
an interactive viewer capable of displaying low dynamic
range panoramic images. This Java viewer (“PTViewer”)
uses either equirectangular or cubic source panoramas
similar to Quicktime [19] and VRML [20], and has been
described elsewhere [21]. The user interactively selects
viewing parameters (pan, tilt, zoom level), and the viewer
renders the viewport content using well known projec-
tion transformations. The conventional program parts are
shown in the upper part of figure 1. The lower part shows

Panorama
8bit RGB

Render
Projection

Viewport
8bit RGB

User Interaction
Pan, Tilt, Zoom,...

Render
Projection

Viewport
8bit RGBFB

Panorama
8bit RGB
Mantissa

Panorama
8bit

Exponent User Interaction
Pan, Tilt, Zoom

Brightness

Automatic Brightness Control

Figure 1: Schematic function of panoramic viewers using
8 bit source color data (upper part) and floating point color
data (lower part). The module FP converts floating point
to byte data and is described in the appendix.

Table 1: Speed of HDR-viewer as compared to standard
viewer. Units are frames per second for a 420 � 300 pixel
viewport.

Interpolator Source Image type Speed (fps)
Nearest Neighbor 8bit JPEG 18.9
Nearest Neighbor HDR 15.6

Bilinear 8bit JPEG 14.7
Bilinear HDR 9.9

the added functions of the viewer when displaying HDR-
panoramas. Internally we use a memory representation of
the HDR-image proposed by Ward [22] and used in the
Radiance file format [23][24]. In this format each pixels
data consist of four bytes, one corresponding to the bi-
nary exponent of the luminance of the brightest colour.
Three other bytes code the mantissas of the luminance
data for the three RGB-colors. The numeric values cor-
respond to linear luminance which means that they scale
linearly with physical light intensity. Physically correct
brightness adjustment is achieved by scaling these linear
data.

Handling the floating point data is done using several
lookup tables as described in the appendix. One integer
multiplication and shift operation is added for each color
channel for each viewport pixel compared to the low dy-
namic range viewer. The speed penalty is demonstrated in
the comparison of table 1 and is generally acceptable. The
results in this table were obtained using nearest neigh-
bor and bilinear interpolators. The program executed
on a slightly outdated consumer PC-configuration (Win
98, AMD Duron 800MHz, Sun Java 1.4). No hardware
graphics accelaration is used in either configuration, and
considerable higher speeds are usually achieved with na-
tive viewers. The larger relative penalty for bilinear in-
terpolation is due to the requirement of fetching and con-
verting four floating point source data for each destination
pixel as compared to just one in the other case.

2.1 Automatic Brightness Control

Several schemes for automatic adjustment of brightness
and display of high dynamic range images have been pro-
posed [14],[13], [12]. For the interactive viewer we se-

2

lected a method similar to the one used in [16]: The view-
port center (i.e. center area with dimensions

�
width � 2 ����

height � 2 � is constantly monitored and the average view-
port pixel luminance s1 corresponding to no brightness
correction is calculated. This value is compared with a
preset optimum value p0 and the brightness adjusted ac-
cordingly. Instead of a mass-spring dynamic used by Co-
hen et al. [16] a simpler autorange function has been
implemented, allowing the user to select the value of
α 	 �

p1
 p0 ��� � s1
 p0 � . The feedback loop (see figure
1) then adjusts the viewport luminance to p1. α 	 0 corre-
sponds to strict adjustment, which fixes the pixel average
of the viewport center region to the predefined optimum
value p0, whereas α 	 1 does not change luminance at
all.

This action is demonstrated in figure 2.1 which exhibits
two viewports generated by PTViewer using the source
image of figure 3.

Figure 2: Two partial views generated by PTViewer us-
ing the second image of figure 3 in automatic brightness
adjustment mode. Autorange is set to 0.3.

Both images are rendered using the autorange parame-
ter α set to 0.3 and the optimum viewport luminance p0
set to 86. The first image is much darker, and its center av-
erages to s1 	 18 without adjustment. If α were one, this
image would be brightened to the optimum value 86. Due
to the smaller value of α, it is brightened to just p1 	 65.
This makes details visible while preserving the sensation
of darkness. The same procedure is applied to the bright
view into the sun in the second image of figure 2.1. Here
the average without adjustment is s1 	 378, whereas the
actual adjustment is targeted at p1 	 173. The speed com-
parison in table 1 has been obtained using α 	 0 � 3.

Finally, manual adjustment is provided by mapping
keyboard keys to incrementing and decrementing bright-
ness.

3 File format

A number of file formats has been proposed for storage of
digitized high dynamic range images: The Radiance for-
mat by Ward [23] described in the last section, the logluv-
format by Larson [25] implemented in the current TIFF-
library [26], 16 bit variants of standard formats like TIFF
[26] or PNG [27], and raw floating point formats which
store the full precision of four byte floating point data
for each pixel and color. These formats focus on high fi-
delity but require substantially more space than is usually
tolerated for internet based applications. For this work
we have used a simple extension of the standard JPEG
format which implements the basic idea of the Radiance
[23], [24] format. Basically, the RGB mantissas of the
Radiance file are stored as standard JPEG image, while
the exponents are attached as separate compressed data
block.

The JPEG format in its most often used baseline vari-
ant [28] divides an image into subimages each 64 pix-
els large (8 � 8) and encodes each subimage separately.
Breaking up the pixel data into mantissas and exponents
interferes with the JPEG compression and leads to addi-
tional compression artefacts. This can be avoided by ad-
justing the mantissas in each 64 pixel subimage to use the
same exponent (the largest in this block). That way the
standard JPEG compression scheme becomes applicable
to the mantissa data. Additionally, the storage require-
ment for the exponents decreases drastically by a factor
of 64, which is further reduced by compressing the data.
The disadvantage of this method is the limited dynamic
range within each 8 � 8 pixel block, which is reduced
to the usual 8 bit range. For photography based images
this can almost always be tolerated, see the remarks about
lensflare in the introduction. The overall dynamic range
of this format covers the full range of 256 binary expo-
nents, i.e. 256 f-stops or intensity ratios of 1077.

An example of this technique is shown in figure 3.
The first image is derived from the low dynamic range
version, while the second image is adjusted for use
by PTViewer. The compressed exponent attachment
amounts to only 2336 bytes compared to 312 kBytes for
the JPEG-compressed RGB-mantissas. Nevertheless, the
fjpeg file is 66 kBytes larger than the low dynamic range
JPEG image created using the same JPEG-quality setting.
This is due to the higher contrast of the RGB-mantissas,

3

Figure 3: Winter scene photographed directly into the sun.
The first image is a standard 8 bit file (JPEG) showing
clipping in the sky and black featureless shadows. The
second image features the mantissas of a floating point
JPEG image. The source has been generated by combin-
ing 5 images with different exposure levels. Image size
is 1600 1200 pixels. Each square dot in the right image
corresponds to one 64 pixel subimage.

where each 64 pixel subimage has at least one pixel with
one byte valued above 128.

The file specification for the floating point JPEG format
(fjpg) are summarized as follows:

� Standard JPEG image representing the RGB-
mantissas. Mantissas are adjusted for each 8 8
pixel subimage to use the same exponent.

� Followed by a block of byte sized binary exponents
(ordered left to right, top to bottom) representing the

Table 2: File sizes of image shown in figure 3

Format Filesize
JPEG 249 kBytes
fjpg 315 kBytes
Radiance 5.42 MBytes
8 bit TIFF 4.91 MBytes
Raw float 29.2 MBytes

largest Radiance exponent in each 64 pixel block.
This attachment is additionally compressed by the
lossless deflate-method (zlib-library [29]).

Typical file sizes for the image shown in figure 3 are
displayed in table 2. The JPEG compression for both the
JPEG and fjpg versions were carried out using the open-
source JPEG-library[28] with quality set to 80%. TIFF
data are packbits-compressed[26], and Raw float data are
uncompressed 12 byte/pixel RGB floating point represen-
tations.

It should be added that the fjpg format is quite easily
generated and decoded using standard programming tech-
niques. The current Java API [30] implements methods
for decoding both JPEG and zlib compressed data, and
the Java-viewer of this work requires less than 30 lines of
program code for this task. This is an important consider-
ation since the applet code has to be transmitted together
with the image data.

The Java viewer is demonstrated on this website[21].
A program for conversion from and to the fjpg file format
has also been devolped and is available from the same site.

4 Conclusion

An interactive Java viewer capable of displaying high dy-
namic range panoramas has been developed and its func-
tion has been demonstrated. The speed penalty for using
extended range data is 20-35%. Using an extended JPEG-
format the additional space requirement for transmitting
the HDR-data becomes small and amounts to typically
25%. It is mainly due to the increased size of the JPEG-
compressed RGB-mantissas. The size of the exponent
data is negligible and below 1% of the total file size in

4

our examples. Finally, memory requirement is slightly in-
creased due to the storage of the HDR-exponents. While
the low range viewer stores 5 bytes per panorama pixel (3
color channels plus 1 alpha-mask plus 1 hotspot indica-
tor), we now need 6 bytes.

5 Appendix: Brightness Adjust-
ment

A lookup table Lgamma (datatype byte, size lmax) to
generate viewport pixel data (0...255) from linear lumi-
nance data (0.....lmax) is generated at program initial-
ization time. This table is normalized so that linear lu-
minance 1 corresponds to viewport luminance 1. lmax
is the smallest linear luminance value leading to satu-
rated viewport pixels (ViewportColor=255). The current
implementation uses a gamma curve ViewportColor �
LinearColor1 � γ but any curve depending on the specific
graphics hardware could be used. A second lookup table
Lexp (datatype integer, size 256) to generate linear lumi-
nance data for each of the 256 possible exponents of the
HDR data multiplied with the desired brightness adjust-
ment factor a, i.e. Lexp � n ��� a � 2n � 128, is calculated prior
to each viewport drawing request. Most of the numbers
in this array are outside the integer range and are clamped
to INTEGER_MAX or 0. Pixel data are then processed
by multiplying Lexp with the HDR mantissa. The result
is inserted in Lgamma to generate viewport pixel data.
Example: Suppose the renderer determines pixel i of the
HDR-image to be used for pixel k in the viewport. The
calculations to determine viewport color become

int LinearColor = (HDR_mantissa[i]
* Lexp[HDR_exponent[i]])>>8;

if(LinearColor >= lmax)
Viewport[k] = 255;

else
Viewport[k] = Lgamma[LinearColor];

References

[1] R.Ginosar and Y.Y.Zeevi. Adaptive sensitiv-
ity/intelligent scan image processor. SPIE Vi-

sual Communications and Image Processing, 1001,
November 1988.

[2] P.J.Burt and R.J.Kolczynski. Enhanced image cap-
ture through fusion. In Proc.of the ICCV, pages 173–
182, 1993.

[3] B.C.Madden. Extended Intensity Range Image.
Grasp Lab,UPenn, 1993.

[4] S.Mann and R.Picard. Being undigital with dig-
ital cameras:extending dynamic range by combin-
ing differently exposed pictures. In Proceedings of
IS&T,46th annual conference, pages 422–428, 1995.

[5] Paul E. Debevec and Jitendra Malik. Recover-
ing high dynamic range radiance maps from pho-
tographs. In Proceedings of SIGGRAPH 97, pages
369–378, 1997.

[6] T.Mitsunaga and S.K.Nayar. Radiometric self cali-
bration. In Proc.of CVPR, volume 2, pages 374–380,
June 1999.

[7] M.A.Robertson, S.Borman, and R.L.Stevenson. Es-
timation theoretic approach to dynamic range im-
provement through multiple exposures. In Proc.of
ICIP, pages 159–163, 1999.

[8] Y.Y.Schechner and S.K.Nayar. Generalized mosaic-
ing. In Proc.of the ICCV, volume I, pages 17–24,
2001.

[9] Michael D. Grossberg and Shree K. Nayar. High
dynamic range from multiple images: Which expo-
sures to combine? In Workshop on Color and Pho-
tometric Methods in Computer Vision, 2003.

[10] http://www.spheron.com/products/spherocamh-
dr/hdri.html.

[11] C. Schlick. High dynamic range pixels. Graphics
Gems, IV:422–429, 1994.

[12] K.S.N. Pattanai, J.E. Tumblin, H. Yee, and D.P.
Greenberg. Time-dependent visual adaptation for
realistic image display. In SIGGRAPH, pages 47–
54, 2000.

5

[13] A. Scheel, M. Stamminger, and H.P. Seidel. Tone re-
production for interactive walkthroughs. In Eleventh
Eurographics Workshop on Rendering, 2000.

[14] J. Tumblin, J.K. Hodgins, and B.K. Guenter. Two
methods for display of high contrast images. ACM
Transactions on Graphics, 18(1):56–94, January
1999.

[15] Michael Ashikhmin. A tone mapping algorithm
for high contrast images. In Rendering Techniques
2002: 13th Eurographics Workshop on Rendering,
pages 145–156, 2002.

[16] Jonathan Cohen, Chris Tchou, Tim Hawkins, and
Paul Debevec. Real-time high-dynamic range tex-
ture mapping. In 12th Annual Eurographics Work-
shop on Rendering, pages 313–320, June 2001.

[17] Erik Goetze. http://radio.weblogs.com/0110138-
/stories/2003/02/06/hdrforpanoramas.html.

[18] Aldo Hoeben. http://fieldofview.nl/rd-adr.php.

[19] http://www.quicktime.com.

[20] http://www.vrml.org.

[21] http://www.fh-furtwangen.de/d̃ersch.

[22] Greg Ward. Real pixels. Graphics Gems, II:80–83,
1991.

[23] Greg J. Ward. The radiance lighting simulation and
rendering system. In SIGGRAPH, pages 459–472,
July 1994.

[24] http://radsite.lbl.gov/radiance.

[25] G. W. Larson. Logluv encoding for full-gamut, high-
dynamic range images. Journal of Graphics Tools,
3(1):15–31, 1998.

[26] http://www.libtiff.org.

[27] http://www.png.org.

[28] http://www.jpeg.org.

[29] http://www.zlib.org.

[30] http://www.javasoft.com.

6

